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Abstract
The resistivity, ρ, of the spin-ladder compound CaCu2O3 is investigated
between T ∼ 130–450 K. The ρ(T ) data measured for j ‖ b (along the
Cu–O–Cu leg) and j ‖ a (along the Cu–O–Cu rungs), ρa(T ) > ρb(T ),
exhibit an activated dependence, similar in both directions and characterized
by a nearest-neighbour hopping followed by a variable-range hopping (VRH)
regime when T is decreased. A detailed analysis of ρ(T ) demonstrates that
conventional d-dimensional models of the hopping conductivity, based on the
electron localization in disordered systems, cannot interpret the experimental
data at any d = 1, 2 or 3, leading to the mismatch of the characteristic energies
and/or unphysical values of the characteristic length scales. The observed VRH
conductivity law on the low-temperature interval, ln ρ ∼ T −3/4, contradicts
the models above, too. Instead, it is found that this law can be substantiated
and the correct matching of the energy and length scales can be found within a
model of Fogler et al (2004 Phys. Rev. B 69 035413) by treating CaCu2O3 as a
three-dimensional array of quasi-one-dimensional electron crystals.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years much attention has been paid to the so-called spin-ladder systems owing
to the prediction of the presence of spin-gap and possible appearance of the ‘d-wave’
superconductivity in the hole-doped even-leg systems [1–3]. The ladder systems are
considerably easier to study theoretically than two-dimensional models because they are
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basically quasi-one-dimensional and they can provide a playground for studies of high-critical-
temperature superconductors [3].

CaCu2O3, belonging to the ladder family, has not yet been well studied. CaCu2O3 has a
geometry very similar to the well-known spin-ladder material SrCu2O3. However, SrCu2O3

has a planar Cu–O–Cu structure (180◦). In contrast to this, the compound CaCu2O3 consists
of an array of linear Cu–O–Cu legs coupled through buckled Cu–O–Cu rungs (123◦) to
form ladders [4]. Recently, high-quality bulk CaCu2O3 single crystals [4, 5] as well as
[CaCu2O3]4 [6] thin films have been prepared and characterized.

CaCu2O3 shows an unusual non-planar hole distribution at variance with conventional
ladder compounds [7]. In contrast to the undoped two-leg ladder compounds, undoped
CaCu2O3 is an antiferromagnet [4], like other two-dimensional parent compounds. Therefore,
this compound can be considered as an anisotropic layer compound and a candidate for high-
temperature superconductivity at hole doping away from the antiferromagnetic insulating state
investigated so far [7, 8].

Here, we report on the conductivity of the two-leg CaCu2O3 single crystals. The
investigations are expected to yield important information about the mechanisms of charge
transfer, the energy spectrum, and the properties of charge carriers in this material.

2. Results and discussion

CaCu2O3 has an orthorhombic lattice, space group Pmmn, with lattice parameters a =
9.949 Å, b = 4.078 Å and c = 3.460 Å at T = 10 K. Single crystals of CaCu2O3 were grown
using the travelling solvent floating zone (TSFZ) method with a CuO-rich solvent. The growth
was carried out in a four-lamp optical FZ furnace built by Crystal Systems Inc., under flowing
O2 doped with about 8% Ar. The growth direction in the obtained crystals is approximately
parallel to the copper oxide chain b [010] direction [4]. The electron probe microanalysis data
taken at ten points of the crystal surface of size 2 × 2 mm2 reveal the following composition
of the elements. Ca: 0.854 (0.023), Cu: 2.039 (0.056) and O: 3.005 (0.082). We note that an
appreciable excess of Cu and a respective deficiency of Ca are quite typical for this material [5].

The resistivity, ρ, was measured in zero magnetic field and in pulsed fields up to B = 45 T,
using silver paint on evaporated gold contacts and the geometry of j ‖ b and j ‖ a [100] (or,
more strictly, with j having a small angle with the a direction of the sample) in investigations
of ρ(T ) at B = 0, the cases marked below as # 2b and # 2a, respectively, whereas the
magnetoresistance (MR) was measured at j ‖ b, B ‖ c [001] and j ‖ B ‖ b at constant
T = 237 K. Special care was taken in the electronic conductivity experiments using a
home-made high impedance voltage amplifier. The transport measurements with j ‖ b were
both performed with two and four probes, revealing identical temperature dependences of the
resistance.

As can be seen from figure 1, ρ(T ) at B = 0 has a similar strongly activated character
in both cases of # 2a and # 2b with ρa(T ) (# 2a) exceeding measurably ρb(T ) (# 2b). The
MR �ρ/ρ = [ρ(B) − ρ(0)]/ρ(0) (not shown) does not exhibit a systematic variation with
the magnetic field up to B = 45 T within an error of �ρ/ρ ∼ 1.5%, both with increasing and
decreasing B .

The ρ(T ) dependences in figure 1 suggest electron localization and hopping charge
transfer. A nearest-neighbour hopping (NNH) conductivity with the Arrhenius law,

ρ(T ) = ρ0n exp[Ea/(kT )], (1)

where Ea is the activation energy and ρ0n is the prefactor (generally, ρ0n has a weak power-law
dependence on T , which can be neglected comparing with a much stronger exponential one as
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Figure 1. Temperature dependence of the resistivity for # 2b and # 2a. Insets: ln ρ versus 1/T for
# 2a and # 2b.

far as ρ(T ) varies by several orders of the magnitude), follows from the plots of lnρ versus
1/T in the insets of figure 1 down to the temperatures Tn ≈ 189 K and 236 K for # 2b and
# 2a, respectively. The linear fit of the plots in the insets of figure 1 with equation (1) yields
ρ0n = 6.82×10−4 �m, Ea = 0.38 eV for # 2b and ρ0n = 1.32×10−3 �m, Ea = 0.40 eV for
# 2a. It is worth mentioning a similar value of Ea ≈ 0.28 eV obtained in another copper–oxygen
spin chain/ladder compound, La3Sr3Ca8Cu24O41 [9]. Below Tn the resistivity deviates from
equation (1), which is attributable to the variable-range hopping (VRH) conductivity satisfying
a general law [10, 11]

ρ(T ) = ρ0v exp[(T0/T )p], (2)

where ρ0v is the prefactor, T0 is the characteristic temperature and the values of the exponent p
are specified below. Usually the VRH conductivity is analysed within the Mott (p = 1/4) [10]
or the Shklovskii–Efros (SE, p = 1/2) [11] concepts, depending on the importance of the
Coulomb interaction between the localized electrons. The Mott VRH conductivity sets in with
lowering T for non-interacting electrons in disordered materials, when thermal excitations of
the electrons are insufficient for jumping to the nearest sites with large energy difference and
hopping to the more distant sites with a smaller energy differences is favourable [10]. The long-
range Coulomb interaction leads to a soft Coulomb parabolic gap, �, in the density of states
(DOS) of the localized electrons, (EF − �, EF + �), around the Fermi energy EF, leading to
the SE VRH conductivity law [11].

As can be seen from figure 2, within an interval below the temperature TM ≈ 152 K (# 2b)
and 189 K (# 2a) the plots of lnρ versus T −1/4 can be fitted approximately with a linear law,
yielding the values of ρ0v = 2.39 × 10−40 � m, 4.14 × 10−35 � m and T0 = 2.43 × 1010 K,
1.66 × 1010 K for # 2b and # 2a, respectively. Besides the unphysically low values of ρ0v,
those of TM and T0 are also contradictory. Indeed, within the Mott concept we have Ea ≈ �E ,
the width of the electron band due to disorder. On the other hand, the onset of the Mott VRH
regime satisfies the condition of �εmax ≡ k(T0T 3

M)
1/4 < �E , where �εmax is the maximum

value of the Mott’s optimum stripe or the hopping energy [11]. However, with the values above
we find �εmax ≈ 1.5–1.6 eV to be ∼4 times wider than �E , which completely disagrees with
the assumption of the Mott VRH regime.

As follows from figure 2, the fits of the low-temperature data of ρ(T ) to the SE VRH law
with p = 1/2 can be done within a wider intervals, below the temperature TSE ≈ 170 K (# 2b)
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Figure 2. The plots of ln ρ versus T −1/4 and ln ρ versus T −1/2 for # 2b (upper panel) and # 2a
(lower panel).

and 215 K (# 2a), giving ρ0v = 1.71 × 10−14 � m, 1.08 × 10−12 � m and T0 = 4.28 × 105 K,
3.87 × 105 K for # 2b and # 2a, respectively. However, the width of the Coulomb gap,
� ≈ k(T0TSE)

1/2/2 = 0.37 eV (# 2b) and 0.39 eV (# 2a), evaluated with the values above,
excludes any observations of the NNH conductivity because we have� ≈ Ea ≈ �E , i.e. all the
states of the band of the localized electrons should lie inside the Coulomb gap, contradicting the
linearity of the plots in figure 1 (insets) on the high-temperature interval. In addition, with the
expression T0 = βe2/(kκξ) which takes place in the SE VRH regime, where κ is the dielectric
constant, ξ is the localization radius scaling an exponential decay of the wavefunctions of
the localized electrons, ψ(r) ∼ exp(−r/ξ), and β = 2.8 is a constant, we find the values of
κξ ≈ 1.1–1.2 Å, which for reasonable values of κ > 10 lead to unphysical values of ξ < 0.1 Å.

The analysis above suggested a three-dimensional (3D) VRH regime. However, it can be
shown that similar contradictions persist if the two-dimensional (2D) hopping is assumed. For
example, for a 2D Mott VRH conductivity we have p = 1/3 in equation (2) [11], and the
corresponding fit of the experimental ρ(T ) data (not shown) gives for # 2b T0 = 7.78 × 107 K,
TM ≈ 165 K and �εmax = k(T0T 2

M)
1/3 ≈ 1.1 eV. Also the absence MR in the domain of the

NNH conductivity (T = 237 K) is contradictory. Indeed, under the condition of λ/ξ � 1 (λ
is the magnetic length) which is fulfilled for ξ between 1 and 40 Å, the MR can be written as
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�ρ/ρ = exp(γ B2) − 1 ≈ γ B2, where γ = 0.036ξe2/(Nsh̄2) and Ns is the concentration of
sites [11]. Then from the relation �ρ/ρ < 1.5% above we find Ns > 1 × 1024 cm−3 already
for ξ = 1 Å, which exceeds the total concentration of atoms in the compound.

The values of the electron transfer (hopping) integrals, t , evaluated in [12] for CaCu2O3

satisfy the approximate relations tleg:trung:tinter ≈ 5:2:1, where tleg, trung and tinter are the values
of t in the directions along the leg b, the rungs a and along an intermediate direction in the a–b
plane of the CaCu2O3 structure, respectively. This may provide a possibility of a good quasi-
one-dimensional (1D) hopping regime for # 2b and a less good one for # 2a as well. On the
other hand, the relation tleg > trung is in line with the corresponding relation ρa > ρb evident
from figure 1. The arguments above permit us to examine 1D hopping models to interpret the
conductivity of our material.

The first model to be discussed (Yu et al [13]) deals with non-interacting electrons in
isolated disordered 1D structures like macromolecules. It suggests the NNH regime satisfying
equation (1) at T > Tc and the VRH conductivity given by equation (2) with p = 1/2 at
T < Tc, where Ea = �E (the width of the 1D electron band due to disorder),

T0 = 8�E Rα/kB, Tc = �E/(2RαkB), (3)

α ≡ ξ−1 and R is the distance between the sites. It can be seen that the values of Ea

and T0 found above from figures 1 and 2 (with the plots of ln ρ versus T −1/2), respectively,
can be utilized directly, whereas for Tc we can take the average values between Tn and TSE,
Tc = 179 ± 10 K and 226 ± 10 K for # 2b and # 2a, respectively. From the product of
equations (3) we find �E = k (T0Tc)

1/2/2 ≈ 0.38 eV (# 2b) and 0.40 eV (# 2a), which
coincide with the corresponding values of Ea in agreement with predictions of the model [13].
From the two equations (3) we find for # 2a the values of αR = 10.4 and 9.8, respectively,
and for # 2b αR = 12.1 and 12.3, respectively. These relations are good in the sense that they
match well when evaluated with different experimentally found parameters, T0 and Tc. On the
other hand, assuming that hopping is over the Cu sites (e.g. similar to La3Sr3Ca8Cu24O41 [9])
and taking Rleg = 4.1 Å and Rrung = 3.3 Å, where Rleg and Rrung are the values of R along the
leg and along the rungs of the ladder CaCu2O3 structure, respectively [12], we find again the
unphysically small value of ξ ≈ 0.3 Å. Another weak point of this model will be demonstrated
later.

Serota et al [14] proposed a percolation model of 1D VRH conductivity which takes into
account a finite length, L, of a 1D chain. No electron correlations have been suggested, as well.
The same equation (2) with p = 1/2 has been established for T < Tc, whereas equations (3)
are changed to

T0 = 2x�E Rα/kB, Tc = �E/(2xαRkB), (3′)
respectively, where all the parameters have the same meanings as in the previous 1D model [13]
and x = ln(2αL). For a macroscopic sample we have L ≈ 1–5 mm, so that for the reasonable
values of ξ = 1–1.5 Å (not exceeding R/2) we find L = 17 ± 1. Then with the first and
the second of equations (3′) and the values of Rleg and Rrung above we find ξ = 1.4 and 5.6 Å
(# 2b), ξ = 1.7 and 6.8 Å (# 2a), respectively. Also from the product of equations (3′) we obtain
�E = k(T0Tc)

1/2 = 0.75 eV (# 2b) and 0.80 eV (# 2a). The values of ξ = α−1 found with
the first of equations (3′) are reasonable. However, those found with the second of equation (3′)
are ∼5 times higher and the values of �E are ∼2 times higher than Ea, making this model
inapplicable to the case of CaCu2O3, too.

A poor applicability of the 1D hopping models above to our ρ(T ) data is confirmed by a
more thorough analysis of the resistivity, exhibiting that a low-temperature VRH conductivity
law lnρ ∼ T −1/2, suggested in both models [13, 14], does not exist at all. Indeed, the
value of the exponent p in equation (2) can be found independently by analysing the local
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Figure 3. (a) Temperature dependence of the local activation energy (upper panel) and the plot of
ln ρ versus T −3/4 for # 2b (lower panel).

activation energy, Eloc ≡ d lnρ/d(kT )−1 [11]. Neglecting a weak temperature dependence
of the prefactor we find, with equation (2), ln[Eloc/(kT )] = ln p + p ln T0 + p ln(1/T ), and
p can be found as an angular coefficient of the linear part of the plot ln[Eloc/(kT )] versus
ln(1/T ). As can be seen from figures 3 and 4 (the upper panels), above ∼310 K (# 3b) and
between ∼290–250 K (# 3a) the values of p = 1.05 ± 0.05 and 1.02 ± 0.05 for # 2b and # 2a,
respectively, satisfy the NNH conductivity law because equation (2) reduces to equation (1)
when p = 1. On the other hand, below ∼280 and 230 K we have the values of p = 0.75±0.02
and 0.77 ± 0.02 for # 2b and # 2a, respectively, coinciding with p = 3/4 within the error and
differing evidently from 1/2. In addition, it can be seen that the plots of ln ρ versus T −3/4

(figures 3 and 4, bottom panels) match the linearity at low temperatures better than other plots
of lnρ versus T −p with p = 1/4, 1/3 or 1/2 discussed above.

The law ln ρ ∼ T −3/4 is the most important disagreement with the 1D models
above [13, 14] which deal with the true 1D structures or single isolated 1D chains. Instead,
in CaCu2O3 we have an array of quasi-1D chains, which fill in the 3D space of the crystal.
This is just a case discussed by Fogler, Teber and Shklovskii (FTS) [15]. The main idea
of their approach is that they describe such structures as the 3D array of quasi-1D electron
crystals. The 1D chains are divided by impurities (with the volume concentration N) into
segments (rods) with the average length l = 1/(Na2

⊥), where a2
⊥ is the transversal area per

chain. The conductivity is metallic inside a rod, whereas hopping charge transfer sets in
due to tunnelling of the electrons between different rods along the same chain. At high T
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Figure 4. Temperature dependence of the local activation energy (upper panel) and the plot of lnρ
versus T −3/4 for # 2a (lower panel).

they found the conventional NNH conductivity of equation (1) with Ea ∼ e2/(κl) [15]. At
low T the Coulomb interactions between the electrons and/or different rods (which may also
possess electric charge due to compression by random impurities) in the transversal direction is
important. The VRH conductivity law at low T depends on (i) the dimensionality of hopping
(tunnelling) d = 1, 2 or 3 (ii) the concentration of impurities N and (iii) the character of the
Coulomb interactions in the system, which governs the DOS, g(ε), of charge excitations along
the chains, having in the most important cases (neglecting the logarithmical terms) the form
g(ε) ∼ |ε|μ, where μ = 0, 1 or 2. The general result of the FTS concept is that the exponent p
in equation (2) is given by the expression [15]

p = (μ+ 1)/(μ+ d + 1). (4)

For convenience we reproduce table 1 from [15] as table 1 of the present paper summarizing
all possible values of p in equation (4). As can be seen from table 1 (the value on the intercept
of the last column and the last row) for d = 1 and μ = 2 we have p = 3/4, coinciding with
the values of p found above from the analysis of the local activation energy (figures 3 and 4,
upper panels). This is a strong argument in favour of the FTS model. Additional evidence
can be found below. The law g(ε) ∼ ε2 means existence of the soft parabolic Coulomb gap
� near the Fermi energy, like for example in the 3D doped semiconductors [11]. Within the
conventional percolation approach [11] we have the maximum hopping energy Emax = kBT ξc,
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Table 1. The exponent p of VRH conductivity (equation (4)) in the cases of 3D, 2D and
1D tunnelling and a power-law dependent density of states g(ε) that arises due to 3D Coulomb
interactions [15].

Tunnelling g = const g ∝ |ε| g ∝ ε2

3D 1/4 2/5 1/2
2D 1/3 1/2 3/5
1D 1/2 2/3 3/4

where ξc = (T0/T )3/4, so that the average hopping energy Eav ≈ Emax/2. Using the criterion
of transition to VRH conductivity over the states of the Coulomb gap in a conventional form
Eav = �we find� ≈ (1/2)(T 3

0 Tv)1/4. From the plots of ln ρ versus T −3/4 (figures 1 and 2) we
obtain ρ0v = 2.42 × 10−6 and 1.36 × 10−6 � m, T0 = 1.81 × 104 and 1.73 × 104 K, Tv ≈ 230
and 300 K for # 2a and # 2b, respectively, yielding � ≈ 0.26 and 0.27 eV, which means that
the Coulomb gap lies entirely inside the electron band �E ≈ Ea = 0.40 and 0.38 eV for # 2a
and # 2b, respectively, and the contradictions like those arising from applications of the 3D and
2D Mott and SE VRH conductivity models (see above) do not exist in the FTS model.

In addition, there are arguments towards the relation of a⊥ � l � ls (where 2ls is the
characteristic length of the distorted region around the impurity centre), which means that the
concentration of impurities is high in the investigated material [15]. Indeed, as follows from
the FTS model for high N , only the quadratic energy dependence of the DOS exists, whereas
for low N we would have a sequence of the laws g(ε) ∼ |ε| at higher energies and g(ε) ∼ ε2

at lower energies (cf figure 5 of [15]). This would lead to an interval of the ln ρ ∼ T −2/3

dependence followed by the law ln ρ ∼ T −3/4 when T is decreased [15]. However, on the plots
of ln(Eloc/kT ) versus ln(1/T ) in the upper panels of figures 3 and 4 one can see no intervals
of p = 2/3, whereas that of p = 3/4 is clearly visible and the error in p is sufficiently small
to distinguish between the values of p = 0.67 and p = 0.75.

For high N the characteristic temperature in equation (2) is expressed as

T0 = C2
e2

κlkB

[
a2

⊥
√

rs

ξ 2
⊥

ln

(
l

a⊥

)]1/3

, (5)

where ξ⊥ = a⊥/ ln[e2/(κat⊥)] is the localization length for interchain hopping, a is the mean
distance between the electrons along the chain, t⊥ is the interchain hopping integral, rs = a/aB,
aB = h̄2κ/(me2) is the Bohr radius (m is the electron effective mass) and C2 is a constant of
the order of unity [15]. Because the values of Ea ∼ e2/(κl) are very close for both directions,
# 2b and # 2a, the values of l should be also close. Hence, from l = 1/(Na2

⊥) we have
close values of a⊥, which is generally in agreement with the CaCu2O3 structure. Then we see
that the values of ξ⊥ can differ only due to t⊥, which differs in # 2b and # 2a by ∼2.5 times
(tleg:trung:tinter ≈ 5:2:1, see above) but since ξ⊥ depends on t⊥ only logarithmically, the values
of ξ⊥ should be close for # 2b and # 2a, too. Therefore, as far as the average distance between
the electrons in both directions could not change significantly, the values of T0 for # 2a and
# 2b should be approximately the same, in agreement with only a ∼4% difference between the
values of T0 found from the plots of ln ρ versus T −3/4 above.

Finally, with a logarithmical accuracy (i.e. omitting the logarithmic terms) from
equation (5) we have kBT0 ∼ e2/(κl)r 1/6

s ∼ Ear
1/6
s , yielding rs ∼ (kBT0/Ea)

6 ∼ 103 � 1;
that is, the main condition of applicability of the FTS model, rs � 1 [15], is fulfilled well. The
localization length along the chain can be expressed as ξx = l/s, where s ∼ r 1/2

s ln(l/a). With
the same accuracy we see that s ∼ r 1/2

s � 1 and ξx � l, the relations being in line with the
FTS model, too [15].
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3. Conclusions

We have investigated the resistivity of the spin-ladder compound CaCu2O3. The temperature
dependence of the resistivity is characterized by an NNH conductivity at high T followed
by a VRH conductivity when T is decreased. The analysis of ρ(T ) demonstrates that
conventional concepts of the hopping charge transfer based on the electron localization in
disordered 1D, 2D or 3D systems cannot be applied to interpret our data, leading to intrinsic
contradictions including the mismatch of the characteristic energies and/or unphysical values
of the characteristic lengths as the localization radius. The most important contradiction is
the temperature dependence of the VRH conductivity at low T , which cannot be substantiated
within any of the conventional hopping models above. Instead, this dependence finds its clear
explanation within a quite different approach proposed recently by Fogler et al [15], by treating
CaCu2O3 as a 3D array of the quasi-1D electron crystals. Additional evidence for applicability
of this model is obtained by analysing T0 and Tv, the characteristic temperature and the onset
temperature of the VRH conductivity, respectively, leading to a correct matching of the typical
energies as the electron bandwidth and the width of the Coulomb gap in the spectrum of DOS
of the charge excitations, and to expectable relations between some typical length scales.
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